3.4.30 \(\int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\) [330]

3.4.30.1 Optimal result
3.4.30.2 Mathematica [A] (verified)
3.4.30.3 Rubi [A] (verified)
3.4.30.4 Maple [A] (verified)
3.4.30.5 Fricas [F]
3.4.30.6 Sympy [F]
3.4.30.7 Maxima [F]
3.4.30.8 Giac [F]
3.4.30.9 Mupad [F(-1)]

3.4.30.1 Optimal result

Integrand size = 25, antiderivative size = 159 \[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {\cos (e+f x) \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {(a-b) E\left (e+f x\left |-\frac {b}{a}\right .\right ) \sqrt {a+b \sin ^2(e+f x)}}{3 b f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {a (a+b) \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right ) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 b f \sqrt {a+b \sin ^2(e+f x)}} \]

output
1/3*cos(f*x+e)*sin(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/f-1/3*(a-b)*(cos(f*x+e) 
^2)^(1/2)/cos(f*x+e)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*(a+b*sin(f*x+e)^2) 
^(1/2)/b/f/(1+b*sin(f*x+e)^2/a)^(1/2)+1/3*a*(a+b)*(cos(f*x+e)^2)^(1/2)/cos 
(f*x+e)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*(1+b*sin(f*x+e)^2/a)^(1/2)/b/f/ 
(a+b*sin(f*x+e)^2)^(1/2)
 
3.4.30.2 Mathematica [A] (verified)

Time = 1.12 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.99 \[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\frac {-2 \sqrt {2} a (a-b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )+2 \sqrt {2} a (a+b) \sqrt {\frac {2 a+b-b \cos (2 (e+f x))}{a}} \operatorname {EllipticF}\left (e+f x,-\frac {b}{a}\right )+b (2 a+b-b \cos (2 (e+f x))) \sin (2 (e+f x))}{6 \sqrt {2} b f \sqrt {2 a+b-b \cos (2 (e+f x))}} \]

input
Integrate[Cos[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]
 
output
(-2*Sqrt[2]*a*(a - b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + 
 f*x, -(b/a)] + 2*Sqrt[2]*a*(a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a] 
*EllipticF[e + f*x, -(b/a)] + b*(2*a + b - b*Cos[2*(e + f*x)])*Sin[2*(e + 
f*x)])/(6*Sqrt[2]*b*f*Sqrt[2*a + b - b*Cos[2*(e + f*x)]])
 
3.4.30.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.17, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 3671, 319, 27, 399, 323, 321, 330, 327}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (e+f x)^2 \sqrt {a+b \sin (e+f x)^2}dx\)

\(\Big \downarrow \) 3671

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \int \sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}d\sin (e+f x)}{f}\)

\(\Big \downarrow \) 319

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {2}{3} \int \frac {2 a-(a-b) \sin ^2(e+f x)}{2 \sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \int \frac {2 a-(a-b) \sin ^2(e+f x)}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 399

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {a (a+b) \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {b \sin ^2(e+f x)+a}}d\sin (e+f x)}{b}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 323

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \int \frac {1}{\sqrt {1-\sin ^2(e+f x)} \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}d\sin (e+f x)}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 321

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \int \frac {\sqrt {b \sin ^2(e+f x)+a}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b}\right )+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 330

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {a+b \sin ^2(e+f x)} \int \frac {\sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}{\sqrt {1-\sin ^2(e+f x)}}d\sin (e+f x)}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}\right )+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

\(\Big \downarrow \) 327

\(\displaystyle \frac {\sqrt {\cos ^2(e+f x)} \sec (e+f x) \left (\frac {1}{3} \left (\frac {a (a+b) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} \operatorname {EllipticF}\left (\arcsin (\sin (e+f x)),-\frac {b}{a}\right )}{b \sqrt {a+b \sin ^2(e+f x)}}-\frac {(a-b) \sqrt {a+b \sin ^2(e+f x)} E\left (\arcsin (\sin (e+f x))\left |-\frac {b}{a}\right .\right )}{b \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}}\right )+\frac {1}{3} \sqrt {1-\sin ^2(e+f x)} \sin (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right )}{f}\)

input
Int[Cos[e + f*x]^2*Sqrt[a + b*Sin[e + f*x]^2],x]
 
output
(Sqrt[Cos[e + f*x]^2]*Sec[e + f*x]*((Sin[e + f*x]*Sqrt[1 - Sin[e + f*x]^2] 
*Sqrt[a + b*Sin[e + f*x]^2])/3 + (-(((a - b)*EllipticE[ArcSin[Sin[e + f*x] 
], -(b/a)]*Sqrt[a + b*Sin[e + f*x]^2])/(b*Sqrt[1 + (b*Sin[e + f*x]^2)/a])) 
 + (a*(a + b)*EllipticF[ArcSin[Sin[e + f*x]], -(b/a)]*Sqrt[1 + (b*Sin[e + 
f*x]^2)/a])/(b*Sqrt[a + b*Sin[e + f*x]^2]))/3))/f
 

3.4.30.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 319
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[x*(a + b*x^2)^p*((c + d*x^2)^q/(2*(p + q) + 1)), x] + Simp[2/(2*(p + q) + 
 1)   Int[(a + b*x^2)^(p - 1)*(c + d*x^2)^(q - 1)*Simp[a*c*(p + q) + (q*(b* 
c - a*d) + a*d*(p + q))*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b* 
c - a*d, 0] && GtQ[q, 0] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, 2, p, q, 
x]
 

rule 321
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c 
/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 
0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
 

rule 323
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]   Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + ( 
d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]
 

rule 327
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*EllipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d) 
)], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0]
 

rule 330
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[ 
Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]   Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^ 
2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ[a, 
0]
 

rule 399
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_) 
^2]), x_Symbol] :> Simp[f/b   Int[Sqrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + 
 Simp[(b*e - a*f)/b   Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; Fr 
eeQ[{a, b, c, d, e, f}, x] &&  !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && 
(PosQ[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3671
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^( 
p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff*(Sqrt[ 
Cos[e + f*x]^2]/(f*Cos[e + f*x]))   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a 
 + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
 && IntegerQ[m/2] &&  !IntegerQ[p]
 
3.4.30.4 Maple [A] (verified)

Time = 3.14 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.67

method result size
default \(\frac {-b^{2} \left (\sin ^{5}\left (f x +e \right )\right )+\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}+a \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, F\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) b -\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2}+\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, E\left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b -a b \left (\sin ^{3}\left (f x +e \right )\right )+b^{2} \left (\sin ^{3}\left (f x +e \right )\right )+a b \sin \left (f x +e \right )}{3 b \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f}\) \(265\)

input
int(cos(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 
output
1/3*(-b^2*sin(f*x+e)^5+(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*E 
llipticF(sin(f*x+e),(-1/a*b)^(1/2))*a^2+a*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f 
*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*b-(cos(f*x+e)^2)^(1 
/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2+ 
(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1 
/a*b)^(1/2))*a*b-a*b*sin(f*x+e)^3+b^2*sin(f*x+e)^3+a*b*sin(f*x+e))/b/cos(f 
*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f
 
3.4.30.5 Fricas [F]

\[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \cos \left (f x + e\right )^{2} \,d x } \]

input
integrate(cos(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")
 
output
integral(sqrt(-b*cos(f*x + e)^2 + a + b)*cos(f*x + e)^2, x)
 
3.4.30.6 Sympy [F]

\[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \cos ^{2}{\left (e + f x \right )}\, dx \]

input
integrate(cos(f*x+e)**2*(a+b*sin(f*x+e)**2)**(1/2),x)
 
output
Integral(sqrt(a + b*sin(e + f*x)**2)*cos(e + f*x)**2, x)
 
3.4.30.7 Maxima [F]

\[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \cos \left (f x + e\right )^{2} \,d x } \]

input
integrate(cos(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*cos(f*x + e)^2, x)
 
3.4.30.8 Giac [F]

\[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int { \sqrt {b \sin \left (f x + e\right )^{2} + a} \cos \left (f x + e\right )^{2} \,d x } \]

input
integrate(cos(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")
 
output
integrate(sqrt(b*sin(f*x + e)^2 + a)*cos(f*x + e)^2, x)
 
3.4.30.9 Mupad [F(-1)]

Timed out. \[ \int \cos ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx=\int {\cos \left (e+f\,x\right )}^2\,\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a} \,d x \]

input
int(cos(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2),x)
 
output
int(cos(e + f*x)^2*(a + b*sin(e + f*x)^2)^(1/2), x)